NPN Silicon Expitaxial Planar Transistor
These transistors are subdivided into three groups A, B and C according to their current gain. The type BC546 is available in groups A and B, however, the types BC547 and BC548 can be supplied in all three groups. The BC549 is a low-noise type and available in groups B and C. As complementary types, the PNP transistors BC556...BC559 are recommended.

On special request, these transistors can be manufactured in different pin configurations. Please refer to the "TO-92 TRANSISTOR PACKAGE OUTLINE" on page 80 for the available pin options.

TO-92 Plastic Package Weight approx. 0.18 g Dimensions in mm

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

G S P FORM A AVAILABLE
(wholly owned subsidiary of HZNEY TECHNOLOCY LTD.)

Characteristics at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$

	Symbol	Min.	Typ.	Max.	Unit
 Reverse Voltage Transfer Ratio Current Gain Group A		$\begin{aligned} & - \\ & 1.6 \\ & 3.2 \\ & 6 \end{aligned}$	$\begin{gathered} 220 \\ 330 \\ 600 \\ 2.7 \\ 4.5 \\ 8.7 \\ 18 \\ 30 \\ 60 \\ 1.5 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 3 \cdot 10^{-4} \end{gathered}$	4.5 8.5 15 30 60 110 110	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
DC Current Gain. at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$ Current Gain Group A $\text { at } V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$ Current Gain Group A $\text { at } \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$ Current Gain Group A	$\begin{aligned} & \mathrm{h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{EE}} \\ & \mathrm{~h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \end{aligned}$	$\begin{aligned} & 110 \\ & 200 \\ & 420 \end{aligned}$	$\begin{gathered} 90 \\ 150 \\ 270 \\ 180 \\ 290 \\ 500 \\ \\ 120 \\ 200 \\ 400 \end{gathered}$	$\begin{aligned} & 220 \\ & 450 \\ & 800 \end{aligned}$	
Thermal Resistance Junction to Ambient Air	$\mathrm{R}_{\mathrm{taA}}$	-	-	250)	KW
Collector Saturation Voltage at $I_{c}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=0.5 \mathrm{~mA}$ at $\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	$V_{\mathrm{C}_{\text {csast }}}^{\mathrm{V}_{\text {csat }}}$	-	$\begin{aligned} & 80 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 600 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \end{gathered}$
Base Saturation Voltage at $I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$ at $I_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{V}_{\text {BEsatat }}}^{\mathrm{V}_{\text {BEst }}}$	\square	$\begin{aligned} & 700 \\ & 900 \end{aligned}$	\div	mV
Base Emitter Voltage at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	$V_{B E} V_{B E}$	580	660	$\begin{aligned} & 700 \\ & 720 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	$\begin{aligned} & I_{\text {ces }} \\ & I_{\text {ces }} \\ & \mathrm{C}_{\mathrm{CES}} \\ & \mathrm{C}_{\mathrm{cEs}} \\ & \mathrm{C}_{\mathrm{CES}} \end{aligned}$	- - -	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$

${ }^{11}$) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Characteristics, continuation

	Symbol	Min.	Typ.	Max.	Unit
at $\mathrm{V}_{C E}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \quad \mathrm{HN} / \mathrm{BC} 548, \mathrm{HN} / \mathrm{BC} 549$	$I_{\text {CES }}$	-	-	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Gain-Bandwidth Product at $V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	f_{T}	-	300	-	MHz
Collector-Base Capacitance at $V_{C B}=10 \mathrm{~V}, f=1 \mathrm{MHz}$	$\mathrm{C}_{\text {сво }}$	-	3.5	6	pF
Emitter-Base Capacitance at $\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {Ebo }}$	-	9	-	pF
Noise Figure $\begin{aligned} & \text { at } V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=200 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=2 \mathrm{k} \Omega, \\ & f=1 \mathrm{kHz}, \Delta \mathrm{f}=200 \mathrm{~Hz} \quad \mathrm{HN} / \mathrm{BC} 546, \mathrm{HN} / \mathrm{BC} 547 \end{aligned}$ HN / BC 548 HN / BC 549	F F	-	2	10 4	dB dB

Collector-base cutoff current versus ambient temperature

(wholly owned subsidiary of HDNEY TECHNOLOEY LTD.)

Gain-bandwidth product versus collector current

