EVERLIGHT

DATASHEET

3mm Phototransistor PT204-6C

Features

- Fast response time
- High photo sensitivity
- Pb free
- RoHS Compliance
- This product itself will remain within RoHS compliant version.

Description

 PT204-6C is a high speed and high sensitive NPN silicon phototransistor molded in a standard \$\$\overline{3}\$ mm package. Due to its water clear epoxy the device is sensitive to infrared radiation.

Applications

- Infrared applied system
- Camera
- Printer
- Cockroach catcher

Copyright © 2010, Everlight All Rights Reserved. Release Date Sep.17.2015. Issue No:DPT-0000114_Rev.5

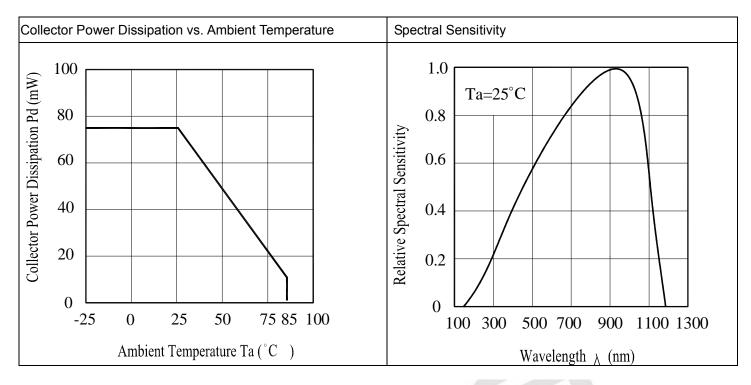
Device Selection Guide

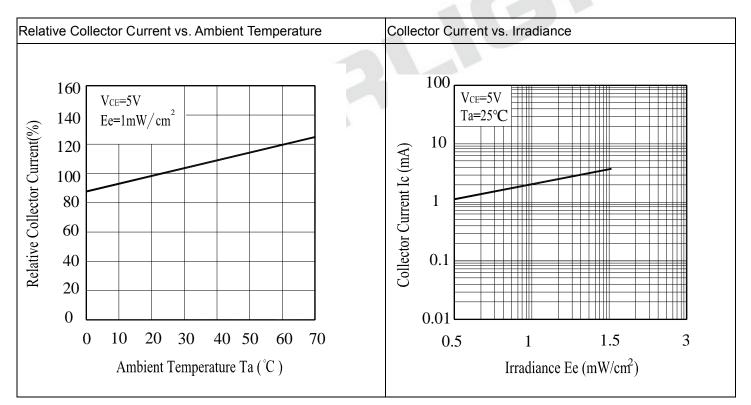
Chip Materials	Lens Color
Silicon	Water clear

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit				
Collector-Emitter Voltage	V _{CEO}	30	V				
Emitter-Collector-Voltage	V _{ECO}	5	V				
Collector Current	I _C	20	mA				
Operating Temperature	T _{opr}	-40~+85	°C				
Storage Temperature	T _{stg}	-40~ +100	°C				
Lead Soldering Temperature	Tsol	260	°C				
Power Dissipation at (or below)	P _c	75	mW				
25°C Free Air Temperature							
Notes: *1:Soldering time 5 seconds.							

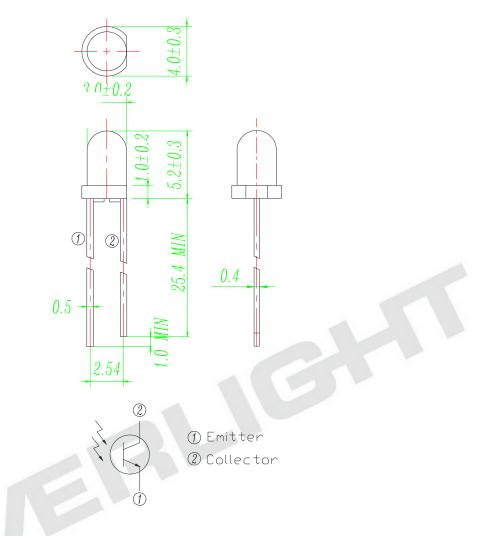
Electro-Optical Characteristics (Ta=25°C)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Collector – Emitter Breakdown Voltage	BV _{CEO}	30			V	I _c =100μA Ee=0mW/cm ²
Emitter-Collector Breakdown Voltage	BV _{ECO}	5			V	I _E =100μA Ee=0mW/cm²
Collector-Emitter Saturation Voltage	V _{CE(sat)}			0.4	V	I _c =2mA Ee=1mW/cm ²
Rise Time	tr		15			V _{CE} =5V
Fall Time	t _f		15		μS	I _c =1mA RL=1000Ω
Collector Dark Current	I _{CEO}			100	nA	Ee=0mW/cm ² V _{CE} =20V
On State Collector Current	I _{C(on)}	0.70	2.0		mA	Ee=1mW/cm ² V _{CE} =5V
Rang Of Spectral Bandwidth	λ _{0.5}	400		1100	nm	
Wavelength of Peak Sensitivity	λ _P		940		mA	
Rankings Parameter Symbol Min Max Unit Test Condition						


Rankings

T Carlining 3					
Parameter	Symbol	Min	Max	Unit	Test Condition
G	IC(ON)	0.70	1.90	~ ^	V _{CE} =5V
Н		1.14	2.60		
J		1.77	3.61	- mA	V _{CE} =5V Ee=1mW/cm ²
K		2.67	5.07		

Tolerance of Radiant Intensity: ±20%

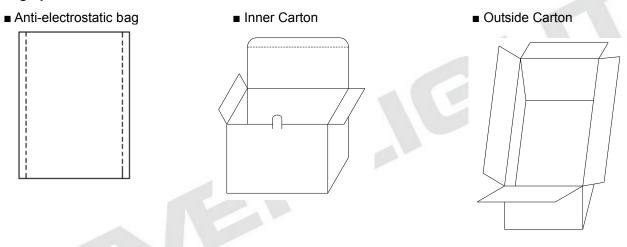

EVERLIGHT

Collector Power Dissipation vs. Ambient Temperature	Collector Current vs. Collector-Emitter Voltage				
$\begin{bmatrix} 10^{-6} & & & & \\ 5 & 2 & & & \\ 10^{-7} & 5 & 2 & & \\ 10^{-8} & 5 & 2 & & \\ 10^{-9} & 5 & 2 & & \\ 10^{-9} & 5 & 2 & & \\ 10^{-10} & & & & \\ 0 & 25 & 50 & 75 & 100 \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Ambient Temperature Ta (°C) Collector-Emitter Voltage VCE (V)					

Copyright © 2010, Everlight All Rights Reserved. Release Date : Sep.17.2015. Issue No:DPT-0000114_Rev.5

Package Dimension

Note: Tolerances unless dimensions ±0.25mm



Label Explanation

- · CPN: Customer's Product Number
- P/N: Product Number
- · QTY: Packing Quantity
- CAT: Luminous Intensity Rank
- HUE: Dom. Wavelength Rank
- REF: Forward Voltage Rank
- LOT No: Lot Number
- Reference: Identify Label Number

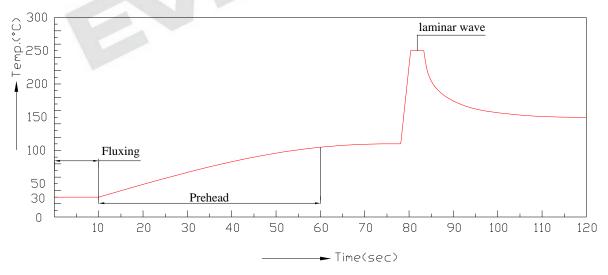
Packing Specification

- Packing Quantity
- 1. 1000 PCS/1 Bag, 4 Bags/1 Inner Carton
- 2. 10 Inner Cartons/1 Outside Carton

Notes

- 1. Lead Forming
 - During lead formation, the leads should be bent at a point at least 3mm from the base of the epoxy bulb.
 - Lead forming should be done before soldering.
 - Avoid stressing the phototransistor package during leads forming. The stress to the base may damage the phototransistor's characteristics or it may break the phototransistors.
 - Cut the phototransistor lead frames at room temperature. Cutting the lead frames at high temperatures may cause failure of the phototransistors.
 - When mounting the phototransistors onto a PCB, the PCB holes must be aligned exactly with the lead position of the phototransistor. If the phototransistors are mounted with stress at the leads, it causes deterioration of the epoxy resin and this will degrade the phototransistors.

2. Storage


- The phototransistors should be stored at 30°C or less and 70%RH or less after being shipped from Everlight and the storage life limits are 3 months. If the phototransistors are stored for 3 months or more, they can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material.
- Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur.

3. Soldering

- Careful attention should be paid during soldering. When soldering, leave more then 3mm from solder joint to epoxy bulb, and soldering beyond the base of the tie bar is recommended.
- Recommended soldering conditions:

Hand Soldering		DIP Soldering		
Temp. at tip of iron	300 Max. (30W Max.)	Preheat temp.	100 Max. (60 sec Max.)	
Soldering time	3 sec Max.	Bath temp. & time	260 Max., 5 sec Max	
Distance	3mm Min.(From solder joint to epoxy bulb)	Distance	3mm Min. (From solder joint to epoxy bulb)	

Recommended soldering profile

Avoiding applying any stress to the lead frame while the phototransistors are at high temperature particularly when soldering.

- Dip and hand soldering should not be done more than one time
- After soldering the phototransistors, the epoxy bulb should be protected from mechanical shock or vibration until the phototransistors return to room temperature
- A rapid-rate process is not recommended for cooling the phototransistors down from the peak temperature.
- Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the phototransistors.
- Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder wave.

4. Cleaning

- When necessary, cleaning should occur only with isopropyl alcohol at room temperature for a duration of no more than one minute. Dry at room temperature before use.
- Do not clean the phototransistors by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Ultrasonic cleaning shall be pre-qualified to ensure this will not cause damage to the phototransistor
- 5. Heat Management
 - Heat management of phototransistors must be taken into consideration during the design stage of phototransistor application. The current should be de-rated appropriately by referring to the de-rating curve found in each product specification.
 - The temperature surrounding the phototransistor in the application should be controlled. Please refer to the data sheet de-rating curve.
- 6. ESD (Electrostatic Discharge)
 - Electrostatic discharge (ESD) or surge current (EOS) can damage phototransistors.
 - An ESD wrist strap, ESD shoe strap or antistatic gloves must be worn whenever handling phototransistors.
 - All devices, equipment and machinery must be properly grounded.
 - Use ion blower to neutralize the static charge which might have built up on surface of the phototransistors plastic lens as a result of friction between phototransistors during storage and handing.

7. Other

- Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply

with the absolute maximum ratings and the instructions included in these specification sheets.

These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.